
Coded Matrix Multiplication
on a Group-Based Model

Muah Kim
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

02mu-a21@kaist.ac.kr

Jy-yong Sohn
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

jysohn1108@kaist.ac.kr

Jaekyun Moon
School of Electrical Engineering

KAIST
Daejeon, Republic of Korea

jmoon@kaist.edu

Abstract—Coded distributed computing has been considered as
a promising technique which makes large-scale systems robust
to the “straggler" workers. Yet, practical system models for
distributed computing have not been available that reflect the
clustered or grouped structure of real-world computing servers.
Also, the large variations in the computing power and bandwidth
capabilities across different servers have not been properly
modeled. We suggest a group-based model to reflect practical
conditions and develop an appropriate coding scheme for this
model. The suggested code, called group code, employs parallel
encoding for each group. We show that the suggested coding
scheme can asymptotically achieve optimal computing time in the
regime of infinite n, the number of workers. While theoretical
analysis is conducted in the asymptotic regime, numerical results
also show that the suggested scheme achieves near-optimal
computing time for any finite but reasonably large n. Moreover,
we demonstrate that decoding complexity of the suggested scheme
is significantly reduced by the virtue of parallel decoding.

A full version of this paper is accessible at: https://arxiv.
org/abs/1901.05162

I. INTRODUCTION

In the era of big data, distributed computing has been
recognized as a solution for realizing large-scale machine
learning [1]. Unlike conventional centralized systems, a dis-
tributed computing system divides the computational work into
subtasks and distributes them over multiple nodes. This system
successfully supports large-scale machine learning by reducing
the computing time via parallel computing.

Yet, there is still a significant room for improvement as the
system is slowed down by the random nature of computing
nodes, where certain nodes are inevitably slower than others.
In particular, the distributed system is shown to be dramatically
degraded by the slowest workers, the “stragglers", whose
computational latency is realized by the tail probability [2].
Lee et al. suggested coded computation as a straggler-proof
scheme, which speeds up matrix multiplication by employing
redundancy with a maximum distance separable (MDS) code
[3]. Since then it has been shown that coded computation can
effectively improve the performance of computing system with
regards to: matrix-matrix multiplication [4]–[6], distributed
gradient descent [7], [8], convolution [9], Fourier transform
[10], and matrix sparsification [11], [12]. Moreover, regarding
the matrix multiplication, new models reflecting the practical
environment of computing systems such as the tree structure
and heterogeneity are suggested and analyzed [13], [14].

Master

𝑛𝑛1 workers

⋯

exp(𝜇𝜇1) exp(𝜇𝜇2)

𝑛𝑛2 workers 𝑛𝑛𝐿𝐿 workers

exp(𝜇𝜇𝐿𝐿)

Group 1

W W

Group 2

W W

W W

Group 𝐿𝐿

⋯

⋯

W W

W W

W

W

Figure 1: Computing Network Model: an (n,µ)−group system with
L groups. Group i has ni workers having i.i.d. completion time
distribution with statistical parameter µi for i ∈ [L].

In recent years, distributed cloud computing services such as
Amazon EC2 have enabled customers to deal with large-scale
computation [15]. The real distributed computing systems
generally adopt the multi-rack structure, where the computing
workers are grouped together in multiple racks [16]–[18].
Moreover, in the real world, the workers’ latency statistics are
heterogeneous due to a mixed use of hardwares with varying
performances or the dynamics of multiple user requests over
shared resources [19]. So far, the homogeneous grouped
structure has been considered in [14], and the heterogeneous
workers without grouped feature have been studied in [13].
However, system solutions which reflect both of the two
practical conditions−grouped structure and heterogeneity (in
terms of number of workers in each group as well as the
bandwidth of the communication links associated with the
groups)−are yet to be established.

A. Main Contributions
We design a group-based computing model as shown in

Fig. 1, where n workers are dispersed into L groups, each
having a different number of nodes and distinct computing
time statistics. We assume that group i has ni nodes, each of
which has a computing time given by an exponential random
variable with rate µi. This is a more practical model than the
existing ones because it resembles the tree-shaped (grouped)
distributed computing systems such as the Hadoop file system
while also considering the heterogeneity of the groups.

Considering the scenario of computing k tasks in the
suggested model, we show that an (n, k)−MDS code achieves
the optimal computing time. Yet, this scheme requires a
prohibitive decoding complexity as k increases. In addition,

it is hard to obtain a closed-form expression for the optimal
computing time due to the heterogeneous nature of the model.

To address these issues, we propose a coding scheme called
group code which divides the total k tasks into L partitions
and then employs L distinct MDS codes. We show that a
carefully designed group code can asymptotically achieve the
optimal computing time as n goes to infinity. In addition, the
suggested group code can reduce the decoding complexity by
a factor of (1

L)β compared to an (n, k)−MDS code, where
β > 1. Furthermore, we obtain a closed-form expression for
the expected optimal computing time, when the number of
workers n goes to infinity.
B. Related Works

Previous works on coded computation either achieve the
optimal computing time with a prohibitive decoding com-
plexity, or reduce the decoding complexity at the cost of
the optimality loss in terms of computing time. In addition,
most of them assume homogeneous workers. Applying an
(n, k)−MDS code in homogeneous systems is suggested by
[3], which achieves the optimal computing time but requires
a large decoding complexity as k increases. Considering a
system model with heterogeneous workers, the authors of
[13] suggested a coding scheme which achieves an asymptoti-
cally optimal computing time. However, the decoding process
requires the computational complexity level of O(k3). On
the other hand, the coding schemes suggested in [4], [6],
[14] encode the tasks along multiple dimensions, which can
effectively reduce the decoding complexities by the virtue of
parallel decoding or using a peeling decoder. However, these
codes lose the MDS property and thereby cannot achieve the
optimal computing time. Besides, these codes do not provide
solutions for practical systems with heterogeneous groups.
Compared to these existing works, our suggested scheme
is shown to not only asymptotically achieve the optimal
computing time, but also requires a low decoding complexity.
C. Notations

Here, we list mathematical notations used in this paper. For
a positive integer n, a set of positive integers less than or
equal to n is denoted by [n] = {1, 2, . . . , n}. For a matrix
A with multiple rows, A = [A1;A2] represents row-wise
division of A, i.e. AT = [AT

1 A
T
2]. We use CG(n,k) to

denote an (n,k)−group code and CMDS(n, k) to denote an
(n, k)−MDS code. The definition of (n,k)−group code is in
Section II-A.

II. SYSTEM MODEL AND TARGET PROBLEM

A. System Model

Consider the n workers that are spread into L groups as
shown in Fig. 1. Here, group i has ni workers whose response
times are described by i.i.d. random variables with a parameter
µi. We define this system as an (n,µ)−group system, where
n = [n1, n2, . . . , nL],µ = [µ1, µ2, . . . , µL]. For simplicity,
we call the jth worker in group i as w(i, j) for i ∈ [L] and
j ∈ [ni]. We implement a matrix-vector multiplication Ax on
this system, where A ∈ Rm×d is a work matrix, and x ∈ Rd×1
is an input vector for some positive integers m and d. The

!"
!#
!$
!%
!&

(3,2)-MDS code!" = !"
(")

!# = !#
(")

*!"#
*!##
*!$#
*!%(#)

Task Allocation

+" = 2

+# = 3

." = 3

.# = 4

Group 1

Group 2

(4,3)-MDS code

Master *!"
(")

*!#
(")

*!$(")

!$ = !"
(#)

!% = !#(#)

!& = !$(#)

Figure 2: Illustration of (n,k) = ([3, 4], [2, 3])−group code. The
matrix is split into two submatrices following the task allocation
vector k = [2, 3], and then the submatrices are encoded with MDS
code group-wise.

work matrix A is divided into equal-sized k submatrices as
A = [A1;A2; · · · ;Ak], where k is a positive integer that can
divide m, and Ar ∈ Rm

k ×d for r ∈ [k].
The task of computing Ax is distributed to n workers

as follows. First, we define k = [k1, k2, . . . , kL] as a task
allocation vector, where the elements are positive integers sat-
isfying

∑L
i=1 ki = k. The set of submatrices {Ar}kr=1 is now

partitioned into L disjoint subsets {Si}Li=1 such that |Si| = ki
holds for i ∈ [L]. We denote the elements in set Si as Si =

{A(i)
j }

ki
j=1. Afterwards, the ki elements of Si are encoded with

an (ni, ki)−MDS code and we denote the set of ni coded sub-
matrices by S̃i = {Ã(i)

j }
ni
j=1. Worker w(i, j) now stores Ã

(i)
j

and computes Ã
(i)
j x when it receives the input vector x from

the master. We call this coding scheme as an (n,k)−group
code, denoted by CG(n,k). Fig. 2 illustrates an example of
an (n,k)−group code when n = [3, 4] and k = [2, 3]. The
matrix A = [A1;A2; . . . ;A5] is divided into two sets of
submatrices, {A1,A2} and {A3,A4,A5}. Then, by applying
a (3, 2)−MDS code and a (4, 3)−MDS code, respectively,
we obtain {Ã(1)

1 , Ã
(1)
2 , Ã

(1)
3 } and {Ã(2)

1 , Ã
(2)
2 , Ã

(2)
3 , Ã

(2)
4 }.

Each worker individually transmits its computational result
Ã

(i)
j x to the master when its computation is finished. To

obtain the computational output Ax, the master needs at least
ki computational results from each group i to decode the
(ni, ki)−MDS code. Note that this model can be directly
applied to the matrix-matrix multiplication, where the input
vector x is replaced by a matrix B ∈ Rd×c.

We adopt the exponential distribution model for the com-
pletion time of a worker, which is defined as the time taken
for both computation and transmission of the computed result
to the master. The exponential distribution closely reflects the
runtime of an actual distributed computing system, as shown
in [3]. This model has also been used in other papers on coded
computation [4], [14]. Unlike these papers, however, a worker
in group i has the distribution parameter µi, where µi varies
among different groups. More precisely, the completion time
T

(i)
j of worker w(i, j) is defined by its cumulative distribution

function as Pr[T
(i)
j ≤ t] = 1− ekµit for time t ≥ 0. Here, the

completion time has the rate of kµi since the number of rows
in the submatrix Ar ∈ Rm

k ×d becomes smaller as k increases.

B. Target Problem

This paper mainly aims at analyzing the total execution
time Texec of (n,k)−group codes, which refers to the entire
time taken for computing and decoding. The computing time
Tcomp is the time taken for the master to gather computational
subtasks from the workers, while the decoding time Tdec is
the time taken to recover the original task of computing Ax
from the gathered subtasks. In this paper, we assume that the
encoding time complexity is negligible compared to Tcomp and
Tdec. This is because we focus on the scenarios of multiplying
varying input vectors with the same work matrix A, which is
encoded once prior to the computation. Thus, we have

Texec(C) = Tcomp(C) + Tdec(C),

when code C is applied to the system.
We focus on analyzing the computing time of (n,k)−group

codes, which is denoted by Tcomp(CG(n,k)). Recall that the
computing time of an (n,k)−group code is equivalent to
the time when every group i has at least ki workers which
finish their tasks. Let T (i)

ki:ni
be the kthi smallest value among

{T (i)
j }

ni
j=1. Then, Tcomp(CG(n,k)) can be expressed as

Tcomp(CG(n,k)) = max(T
(1)
k1:n1

, T
(2)
k2:n2

, . . . , T
(L)
kL:nL

).

Since it is hard to find a closed-form expression for
E[Tcomp(CG(n,k))] when n is finite, we set our main problem
as that of obtaining the expected value as n goes to infinity,
i.e.

Pmain : compute lim
n→∞

E[Tcomp(CG(n,k))].

Here, we assume k = Θ(n) and ni = Θ(n) for i ∈ [L].
III. OPTIMAL COMPUTING TIME ANALYSIS

Here we find the optimal computing time of a given
(n,µ)−group system. Theorem 1 states that applying an
(n, k)−MDS code achieves the optimal computing time. We
assume that an (n, k)−MDS code is applied to the k sub-
matrices {A1,A2, . . . ,Ak}, resulting in n coded submatrices
{Ã1, Ã2, . . . , Ãn}. Then, the n coded submatrices are dis-
tributed to n workers regardless of the groups they belong.
Here we denote the computing time of an (n, k)−MDS code
as Tcomp(CMDS(n, k)).
Theorem 1. Consider computing k tasks on an (n,µ)−group
systems. Then, an (n, k)−MDS code achieves the optimal
computing time. In other words, for arbitrary (n, k) linear
code C ∈ C(n, k),

Tcomp(CMDS(n, k)) ≤ Tcomp(C).

Proof. Given an arbitrary realization of the completion times
{T (i)

j }i∈[L],j∈[ni] of workers, we can think of their order
statistics T1:n < T2:n < · · · < Tn:n. Recall that (n, k) linear
code C cannot recover the original message if there are more
than n− k erasures, which leads to Tcomp(C) ≥ Tk:n. By the
MDS property, we have Tcomp(CMDS(n, k)) = Tk:n, which
completes the proof.

IV. COMPUTING TIME ANALYSIS

In this section, we provide the computing time analysis
when the workers are dispersed into L = 2 groups. The com-

puting time for general L can be analyzed by the mathematical
induction, which is given in [20] due to the lack of space.

A. Computing Time for an Arbitrary Task Allocation k

For simplicity, we denote the task allocation vector as
k = [k1, k2] = [k1, k − k1]. The computing time of
an (n,k)−group code for L = 2 can be expressed
as Tcomp(CG(n,k)) = max(T

(1)
k1:n1

, T
(2)
k2:n2

) by definition.
Lemma 1 provides the expected computing time of an
(n,k)−group code when n goes to infinity.

Lemma 1. Consider an (n,µ)−group system with L = 2
groups. Then, the expected computing time of an (n,k)−group
code satisfies the following:

lim
n→∞

E[Tcomp(CG(n,k))] = lim
n→∞

E[max(T
(1)
k1:n1

, T
(2)
k2:n2

)]

= max(lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k2:n2

])

= max

(
− 1

kµ1
log(1− k1

n1
),− 1

kµ2
log(1− k2

n2
)

)
. (1)

Proof. We set aside the proof in [20].

This lemma illustrates that in the asymptotic regime of large
n, the expected computing time of an (n,k)−group code can
be easily obtained for given n, µ and k.

B. Optimizing the Task Allocation of a Group Code

Now, we aim at optimizing task allocation rule k which
minimizes the computing time of an (n,k)−group code. We
define the optimal task allocation vector by

k∗ := arg min
k

E[Tcomp(CG(n,k))], (2)

whose elements are denoted by k∗ = [k∗1 , k
∗
2 , . . . , k

∗
L]. Be-

fore finding k∗, we state a relationship between Tk:n and
{T (i)

ki:ni
}Li=1 in the following Lemma. Recall that Tk:n is

equivalent to Tcomp(CMDS(n, k)), and the maximum among
{T (i)

ki:ni
}Li=1 corresponds to Tcomp(CG(n,k)) by definition.

Lemma 2. Under the scenario of computing k tasks on
an (n,µ)−group system with L = 2 groups, consider
applying an (n,k)−group code where n = [n1, n2] and
k = [k1, k−k1]. Given an arbitrary realization of completion
time {T (i)

j }i∈[2],j∈[ni] of workers, let Tk:n be the kth smallest
value among {T (i)

j }i∈[2],j∈[ni]. Meanwhile, T (i)
ki:ni

denotes the
kthi smallest value among {T (i)

j }
ni
j=1. Then, we have

min(T
(1)
k1:n1

, T
(2)
k−k1:n2

)≤ Tk:n≤ max(T
(1)
k1:n1

, T
(2)
k−k1:n2

). (3)

Proof. Let U = {T (i)
j : T

(i)
j ≤ Tk:nfori ∈ [2], j ∈ [ni]}.

Consider a subset U1 of set U such that U1 = {T (1)
j : T

(1)
j ≤

Tk:nforj ∈ [n1]} and its complementary set UC1 = {T (2)
j :

T
(2)
j ≤ Tk:nforj ∈ [n2]}. Here, we define k′1 := |U1|. Notice

that |UC1 | = k−k′1. Then, we may write T (2)
k−k′1−1:n2

< Tk:n <

T
(1)
k′1+1:n1

. When k′1 < k1, we have Tk:n < T
(1)
k′1+1:n1

≤ T (1)
k1:n1

.

Similarly, we have Tk:n > T
(2)
k−k′1−1:n2

≥ T
(2)
k−k1:n2

, which

leads to T
(2)
k−k1:n2

≤ Tk:n ≤ T
(1)
k1:n1

. When k′1 > k1, we
have T

(1)
k1:n1

≤ Tk:n ≤ T
(2)
k−k1:n2

using the same method as
above. For k′1 = k1, it is obvious that min(T

(1)
k1:n1

, T
(2)
k−k1:n2

) <

Tk:n = max(T
(1)
k1:n1

, T
(2)
k−k1:n2

). This completes the proof.
In the following theorem, we find the optimal task allo-

cation k∗, and show that the expected computing time of an
(n,k∗)−group code converges to that of an (n, k)−MDS code
for sufficiently large n.

Theorem 2. Consider a scenario of computing k tasks on
an (n,µ)−group system with L = 2 groups, where an
(n,k)−group code is applied. In the asymptotic regime of
large n, the optimal task allocation k∗ = [k∗1 , k − k∗1] can be
obtained1 by solving

k∗1 + n2 − n2
(

1− k∗1
n1

)µ2
µ1

= k. (4)

Moreover, the expected computing time of an (n,k∗)−group
code satisfies the following:

lim
n→∞

E[Tcomp(CG(n,k∗))] = lim
n→∞

E[Tcomp(CMDS(n, k))].

(5)

Proof. Combining (1) and (2), we obtain

lim
n→∞

k∗1 = arg min
k1∈[k]

{
lim
n→∞

max(E[T
(1)
k1:n1

],E[T
(2)
k−k1:n2

])
}

= arg min
k1∈[k]

{
max

(
− 1

kµ1
log(1− k1

n1
),

− 1

kµ2
log(1− k − k1

n2
)
)}
.

Note that the first variable of the max function is a strictly
increasing convex function of k1, while the second one is a
strictly decreasing convex function. Thus, taking the maximum
of the two variables results in a convex function of k1.
Therefore, as n grows to infinity, the minimizer k∗1 coincides
with the intersection point of the two functions, i.e.,

lim
n→∞

E[T
(1)
k∗1 :n1

] = lim
n→∞

E[T
(2)
k−k∗1 :n2

]. (6)

From (1) and (6), we obtain (4) by simple algebraic manipu-
lations. Now we move on to the proof of (5). First, by taking
lim
n→∞ E[·] on (3) and applying Lemma 1, we obtain

min
(

lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k−k1:n2

]
)
≤ lim
n→∞

E[Tk:n]

≤ max
(

lim
n→∞

E[T
(1)
k1:n1

], lim
n→∞

E[T
(2)
k−k1:n2

]
)
.

When k1 = k∗1 , the upper and lower bounds have the same
value as in (6). Thus, bythe squeeze theorem, we have

lim
n→∞

E[Tk:n] = lim
n→∞

E[T
(1)
k∗1 :n1

] = lim
n→∞

E[T
(2)
k−k∗1 :n2

].

Therefore, we obtain (5) by using Tcomp(CMDS(n, k)) = Tk:n

1Here we assume that k∗1 is an integer since the task allocation vector k
consists of integers. However, in the case where k∗1 is not an integer, the
optimal allocation rule is either k = [dk∗1e, k − dk∗1e] or k = [bk∗1c, k −
bk∗1c], since E[Tcomp(CG(n,k))] is a convex function of k1, as discussed
in the proof.

300 600 900 1200n
0

0.2

0.4

0.6

0.8

E
[T

co
m

p]

MDS Code: C
MDS

(n,k)

Group Code: C
G

(n,k*)

Group Code: C
G

(n,keven)

Figure 3: Simulated average computing time E[Tcomp] of an MDS
code and two types of group codes. Parameters are set to (n,µ) =(
[3
4
n, 1

4
n], [1, 2]

)
and k = 100.

and Tcomp(CG(n,k)) = max
i∈[L] T

(i)
ki:ni

.

Recall that an (n, k)−MDS code achieves the optimal
computing time as stated in Theorem 1. The above theorem
implies that an (n,k)−group coded system can asymptotically
achieve the optimal computing time by using the optimal
task allocation rule k = k∗. Note that (4) can be easily
solved when µ1/µ2 = 2 by using the quadratic formula. The
following corollary provides the optimal task allocation k∗

and the corresponding E[Tcomp(CG(n,k∗))] when µ1 = 2µ2.

Corollary 1. Consider a scenario of computing k tasks on an
(n,µ)−group system with L = 2 and µ = [2µ2, µ2]. Under
the scenario, the optimal task allocation k∗ = [k∗1 , k − k∗1] is
obtained as

k∗1 = k − n2 −
n22
2n1

+

√
(n2 +

n22
2n1

)2 − k

n1
n22. (7)

Moreover, the expected value of the corresponding computing
time E[Tcomp(CG(n,k∗))] can be calculated as

lim
n→∞

E[Tcomp(CG(n,k∗))]

=
1

kµ2
log

(√
(1 +

n2
2n1

)2 − k

n1
− n2

2n1

)−1
. (8)

Proof. When µ1 = 2µ2, (4) reduces to (7). In addition,
inserting (7) into (1) results in (8).

V. NUMERICAL RESULTS FOR FINITE NUMBER OF NODES

This section provides the simulated results of computing
time and decoding time when the total number of workers n
is finite. The combinded analysis is set aside in [20] due to
lack of space. Here we first provide simulation results on the
computing time of an (n,k)−group code when the number
of nodes n is finite. Fig. 3 illustrates the expected computing
time of an (n, k)−MDS code E[Tcomp(CMDS(n, k))] and that
of (n,k)−group code E[Tcomp(CG(n,k))], for various n. We
consider two types of group codes: one with the optimal task
allocation k∗ = [k∗1 , k − k∗1], and the other with an even task
allocation keven = [12k,

1
2k]. For a fixed number of tasks k =

100, we assume that n workers are divided into two groups
as n = [n1, n2] = [34n,

1
4n]. Moreover, the average computing

time of a worker doubles in the first group, i.e., µ = [µ1, µ2] =
[1, 2]. For the estimation, we employ Monte Carlo methods
with 104 random samples. The simulation result demonstrates

2 3 4 5 6
L, the number of groups

0

0.1

0.2

0.3

0.4

de
c

Scenario 1
Scenario 2
Minimum Achievable

dec

Trend Line

Figure 4: ρdec versus L for three different scenarios: imbalanced,
balanced and minimum

that the expected computing time of an (n,k∗)−group code
approaches that of an (n, k)−MDS code in the asymptotic
regime of large n, as proved in Theorem 2. Moreover, the
average computing times of two group codes − the optimal
group code CG(n,k∗) and a naive group code CG(n,keven)
− have a significant gap, which supports the need for a careful
task allocation considering the heterogeneity of groups.

Now we compare the decoding complexity of the suggested
(n,k)−group code to that of an (n, k)−MDS code. We
assume that the decoding complexity of an (n, k)−MDS code
is O(kβ) for β > 12. Then, the suggested (n,k)−group code
has a decoding complexity of O((kmax)β) by the virtue of
parallel decoding, where kmax = max

i∈[L] ki. Note that decoding
complexities of two schemes grow with different orders. For
a comparison, we define the ratio of the two orders as

ρdec =

(
kmax

k

)β
.

Note that the ratio ρdec can be minimized down to (1/L)β

when we have kmax = k/L.
Fig. 4 illustrates ρdec under two different scenarios for n =

240 and k = 120. In both scenarios, n and µ are randomly
generated. Moreover, the task allocations for both scenarios are
selected as the optimal k∗, depending on the given parameters
of n and µ. Motivated by the practical setting where the size of
each group and the average computing time of each worker are
bounded, we set n ∼ unif(0.7nL , 1.3

n
L) and µ ∼ unif(1, 2)

with uniform distributions. Scenarios 1 and 2 differ in the rule
of ordering the elements of n and µ, as illustrated below. For
scenario 1, we sort the elements of n and µ in ascending
and descending order, respectively. In other words, ni ≤ nj
and µi ≥ µj hold for all i < j. This is the scenario when
a group with less average response time has less workers. In
the case of scenario 2, both n and µ are sorted in ascending
order, i.e., ni ≥ nj and µi ≥ µj hold for i < j. This is the
scenario when a group with less average response time has
more workers. Under these scenarios, we obtain the average
values of ρdec for 104 samples when β = 2. The simulations
on two scenarios are compared to the minimum achievable
ρdec = (1/L)β . Moreover, we plot the trend line, which is set
to stretch from the point of Scenario 2 for L = 2 and grow
by a factor of (1/L)β .

Fig. 4 delineates that ρdec diminishes along with the trend

2According to the recent works [21], [22] on decoding algorithms, practical
scenarios satisfy β > 1.

line under any scenarios as L grows, while there exists a
noticeable gap between the two scenarios. Moreover, the pro-
posed group code provides a significant decoding complexity
reduction. For example, when L = 4, an (n,k)−group
code already achieves approximately 10x reduced decoding
complexity compared to an (n, k)−MDS code.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[4] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Information Theory (ISIT), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 2418–2422.

[5] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[6] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” 2018.

[7] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from
cyclic mds codes and expander graphs,” in International Conference on
Machine Learning, 2018, pp. 4302–4310.

[8] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[9] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel
and distributed computing within a deadline,” in Information Theory
(ISIT), 2017 IEEE International Symposium on, pp. 2403–2407.

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier
transform,” in Communication, Control, and Computing (Allerton), 2017
55th Annual Allerton Conference on. IEEE, 2017, pp. 494–501.

[11] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016, pp. 2100–2108.

[12] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in Communication, Control, and Computing (Allerton),
2017 55th Annual Allerton Conference on. IEEE, 2017, pp. 1271–1278.

[13] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, 2019.

[14] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon, “Hierarchical coding
for distributed computing,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 1630–1634.

[15] [Online]. Available: https://aws.amazon.com/ec2/?nc1=h_ls
[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[17] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters.” in USENIX Annual Technical Conference, 2014, pp. 1–12.

[18] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and
S. Radhakrishnan, “Scale-out networking in the data center,” Ieee Micro,
vol. 30, no. 4, pp. 29–41, 2010.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.” in
Osdi, vol. 8, no. 4, 2008, p. 7.

[20] M. Kim, J.-y. Sohn, and J. Moon, “Coded matrix multiplication on a
group-based model,” arXiv preprint arXiv:1901.05162, 2019.

[21] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using reed-solomon codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2027–2031.

[22] W. Halbawi, Z. Liu, and B. Hassibi, “Balanced reed-solomon codes for
all parameters,” in Information Theory Workshop (ITW), 2016 IEEE.
IEEE, 2016, pp. 409–413.

